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Ocean mesoscale eddies
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Ocean mesoscale eddies

Atmospheric weather system - Clouds Stirring of phytoplankton by ocean mesoscale eddies



Phytoplankton are invisible to the eye but visible from satellites
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Gulf of Gascogne




Gulf of Finland
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ESA Sentinel 2, 10 m resolution, Baltic Sea




Evolution over 8 days
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Upwelling pulse
50 days before
sampling

Upwelling pulse20 d4

Trajectory

Gangrade and Mangolte, 2024



Nutrients
Phytoplankton

Upwelling pulse
50 days before
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Nutrients Phytoplankton
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Adapted from Najjar, 2009



Basin-scale patterns ot phytoplankton

Ocean forests

Ocean deserts




Wind-driven vertical currents

Annual-mean chlorophyll-a (SeaWiFs, mg m'3)

519" chlorophyll

0.37 10 2.7

Liang et al., 2017



Fishermen discovered fronts are hotspots
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Seabirds hunt fronts too

Fregate birds foraging behavior in the Mozambique Channel

3D-GPS tracking + satellites
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Sea-surface temperature fronts
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Warm, fresh

Geostrophic jet

«— Mesoscale strain

Cross-frontal
ageostrophic circulation

Isopycnal strfaces

Cold, salty

Levy et al, 2018
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The role of submesoscale currents in structuring
marine ecosystems
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;z" Bridging scales: from one front to multiple fronts

SST (ESA-CCI/C3S) Fronts

_—_

50°N

30°N |

20°N

80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W

January 2020

Chl-a (GlobColour)

80°W

70°W 60°W 50°W

Haeck et al., 2023



;’ Bridging knowledges : from fronts to community structure

Impact of fine-scales on phytoplankton Subpolar
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The Impact of Fine-Scale
Currents on Biogeochemical

Cycles in a Changing Ocean
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Sea surface temperature trend
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Bleached coral reefs in Moorea, French Polynesia. Alexis Rosenfeld / Getty Images
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Les centaines de milliers de poissons retrouvés échoués sur la plage de Quintana au Texas. - Quintana Beach Country Park
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MILLION TONNES
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SOURCE: FAO. 2024. FishStat: Global production by production source 1950—2022. [Accessed on 29 March 2024]. In: FishStatJ. Available at: www.fao.org/fishery/en/statistics/software/fishstatj. Licence: CC-BY-4.0.
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The sea is rising— its level has
increased by 23 cm since 1901

Global losses from
tropical storms and floods
hit US$ 102 billion

We have set policies to
protect 8.34% of the ocean

1,677 marine species are
currently at risk of extinction

Marine animal food

production reached a record
of 115 million tonnes

37.7% of fish stocks
are overexploited
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